Discovery of Potent and Specific Dihydroisoxazole Inhibitors of Human Transglutaminase 2
نویسندگان
چکیده
Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme that catalyzes the posttranslational modification of glutamine residues on protein or peptide substrates. A growing body of literature has implicated aberrantly regulated activity of TG2 in the pathogenesis of various human inflammatory, fibrotic, and other diseases. Taken together with the fact that TG2 knockout mice are developmentally and reproductively normal, there is growing interest in the potential use of TG2 inhibitors in the treatment of these conditions. Targeted-covalent inhibitors based on the weakly electrophilic 3-bromo-4,5-dihydroisoxazole (DHI) scaffold have been widely used to study TG2 biology and are well tolerated in vivo, but these compounds have only modest potency, and their selectivity toward other transglutaminase homologues is largely unknown. In the present work, we first profiled the selectivity of existing inhibitors against the most pertinent TG isoforms (TG1, TG3, and FXIIIa). Significant cross-reactivity of these small molecules with TG1 was observed. Structure-activity and -selectivity analyses led to the identification of modifications that improved potency and isoform selectivity. Preliminary pharmacokinetic analysis of the most promising analogues was also undertaken. Our new data provides a clear basis for the rational selection of dihydroisoxazole inhibitors as tools for in vivo biological investigation.
منابع مشابه
Dihydroisoxazole analogs for labeling and visualization of catalytically active transglutaminase 2.
We report the synthesis and preliminary characterization of "clickable" inhibitors of human transglutaminase 2 (TG2). These inhibitors possess the 3-halo-4,5-dihydroisoxazole warhead along with bioorthogonal groups such as azide or alkyne moieties that enable subsequent covalent modification with fluorophores. Their mechanism for inhibition of TG2 is based on halide displacement, resulting in t...
متن کاملDesign, Synthesis, and Evaluation of Dihydroisoxazole Analogs as Irreversible Inhibitors of Tissue Transglutaminase
1 At 76 kD with 686 amino acids, tissue transglutaminase (TG2) is a calcium-dependent multifunctional enzyme that catalyzes post-translational modification of specific glutamine residues. TG2 is a ubiquitous enzyme functioning at various cell locations and plays important roles in many cellular processes including cell death, cell movement, adhesion, and proliferation. Even though TG2 possesses...
متن کاملSearch for the Pharmacophore of Histone Deacetylase Inhibitors Using Pharmacophore Query and Docking Study
Histone deacetylase inhibitors have gained a great deal of attention recently for the treatment of cancers and inflammatory diseases. So design of new inhibitors is of great importance in pharmaceutical industries and labs. Creating pharmacophor models in order to design new molecules or search a library for finding lead compounds is of great interest. This approach reduces the overall cost ass...
متن کاملSearch for the Pharmacophore of Histone Deacetylase Inhibitors Using Pharmacophore Query and Docking Study
Histone deacetylase inhibitors have gained a great deal of attention recently for the treatment of cancers and inflammatory diseases. So design of new inhibitors is of great importance in pharmaceutical industries and labs. Creating pharmacophor models in order to design new molecules or search a library for finding lead compounds is of great interest. This approach reduces the overall cost ass...
متن کاملIdentification and Evaluation of Novel Drug Targets against the Human Fungal Pathogen Aspergillus fumigatus with Elaboration on the Possible Role of RNA-Binding Protein
Bakground: Aspergillus fumigatus is an airborne opportunistic fungal pathogen that can cause fatal infections in immunocompromised patients. Although the current anti-fungal therapies are relatively efficient, some issues such as drug toxicity, drug interactions, and the emergence of drug-resistant fungi have promoted the intense research toward finding the novel drug targets. Methods: In searc...
متن کامل